If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+34x-40=0
a = 3; b = 34; c = -40;
Δ = b2-4ac
Δ = 342-4·3·(-40)
Δ = 1636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1636}=\sqrt{4*409}=\sqrt{4}*\sqrt{409}=2\sqrt{409}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-2\sqrt{409}}{2*3}=\frac{-34-2\sqrt{409}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+2\sqrt{409}}{2*3}=\frac{-34+2\sqrt{409}}{6} $
| 8=3^x | | (3x+45)+(x+15)=180 | | -2a-6=0 | | 5(2x+2)-3=4x+37 | | 6=2(x+2)-8 | | 2(4x-3)=4x+14 | | 10(2x+2)=6(3x+8) | | -9=2(4x+5)-3 | | 5(x+2)=-3x-46 | | 4=4(3x-2) | | 12x-25=7x-50 | | -34=4(x-2)-6 | | 3(4x+2)+5=23 | | -4x-36=2(3x+2) | | 36=4(3x-5)-4 | | -46=2(3x+4) | | 2(5x+3)+6=-28 | | 50=3/2t-t | | 1-5(3x+2)=3x+9 | | 1-8/4x=46+x | | 3x/4=2x+7/5 | | 50+t=3/2t | | -81=9w | | 5w-9(1-w)=0 | | 1-8/14x=46+x | | 2(x+1)=3(x-2 | | 2x+4+2x=×+10 | | x+1/x-1=3/4 | | 4x+20=4(3x-3) | | 7z+2z=45 | | y/5+7=10 | | 6+5q=1 |